A Simplified Stability Study for a Biped Walk with Underactuated and Overactuated Phases

نویسندگان

  • Sylvain Miossec
  • Yannick Aoustin
چکیده

This paper is devoted to a stability study of a walking gait for a biped. The walking gait is periodic and it is composed of a single-support phase, a passive impact, and a double-support phase. The reference trajectories are described as a function of the shin orientation versus the ground of the stance leg. We use the Poincaré map to study the stability of the walking gait of the biped. We only study the stability of dynamics not controlled during the single-support phase, i.e., the dynamics of the shin angle. We then suppose there is no perturbation in the tracking of the references of the other joint angles of the biped. The studied Poincaré map is then of dimension one. With a particular control law in double support, it is shown theoretically and in simulation that a perturbation error in the velocity of the shin angle can be eliminated in one step only. The zone of convergence in one step is determined. The condition of existence of a cyclic gait is given, and for a given cyclic gait, the stability condition is also given. It is shown that due to the given control law for the overactuated double-support phase, a cyclic motion is practically guaranteed to be stable. It should be noted it is possible for the biped to reach a periodic regime from a stopped position in one step. KEY WORDS—walking biped, orbital stability, passive impact, dynamically stable gait, Poincaré return map, simulation results

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-model Stability Control Method of Underactuated Biped Robots Based on Imbalance Degrees

In this paper, a stability control strategy for underactuated biped robots is proposed based on imbalance degree. The dynamic models of single-leg support of underactuated biped robots are firstly illustrated. Based on the external disturbance force strength of the system, the motion process of an underactuated biped robot is partitioned into three stages according to the imbalance degree. In d...

متن کامل

Effect of circular arc feet on a control law for a biped

The purpose of our research is to study the effects of circular arc feet on the biped walk with a geometric tracking control. The biped studied is planar and is composed of five links and four actuators located at each hip and each knee thus the biped is underactuated in single support phase. A geometric evolution of the biped configuration is controlled, instead of a temporal evolution. The in...

متن کامل

Robust control of underactuated bipeds using sliding modes

The purpose of this paper is to present a robust tracking control algorithm for underactuated biped robots capable of self-balancing in the presence of external disturbances. The biped is modeled as a five-link planar robot with four actuators located at hip and knee joints. A sliding mode control law has been developed for the biped to follow a human-like gait trajectory while keeping the tors...

متن کامل

Optimized Joint Trajectory Model with Customized Genetic Algorithm for Biped Robot Walk

Biped robot locomotion is one of the active research areas in robotics. In this area, real-time stable walking with proper speed is one of the main challenges that needs to be overcome. Central Pattern Generators (CPG) as one of the biological gait generation models, can produce complex nonlinear oscillation as a pattern for walking. In this paper, we propose a model for a biped robot joint tra...

متن کامل

Human like trajectory generation for a biped robot with a four-bar linkage for the knees

The design of a knee joint is a key issue in robotics to improve the locomotion and the performances of the bipedal robots. We study a design for the knee joints of a planar bipedal robot, based on a four-bar linkage. We design walking reference trajectories composed of double support phases, single support phases and impacts. The single support phases are divided in two sub-phases. During the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Robotics Res.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2005